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Abstract— This paper presents a predictive control approach to
active mechanical filtering of complex, periodic motions of organs
induced by respiration or heart beating in robotized surgery.
Two different predictive control schemes are proposed for the
compensation of respiratory motions or cardiac motions.

For respiratory motions, the periodic property of the distur-
bance has been included into the input-output model of the
controlled system so as to have the robotic system learn and
anticipate perturbation motions. A new cost function is proposed
for the unconstrained generalized predictive controller (GPC)
where reference tracking is decoupled from the rejection of
predictable periodic motions.

Cardiac motions are more complex since they are the combi-
nation of two periodic non-harmonic components. An adaptive
disturbance predictor is proposed which outputs future predicted
disturbance values. These predicted values are used to anticipate
the disturbance by using the predictive feature of a regular GPC.

Experimental results are presented on a laboratory testbed
and in vivo on pigs. They demonstrate the effectiveness of the two
proposed methods to compensate complex physiological motion.

Index Terms— Medical robotics, Visual servoing, Predictive
control, Disturbance rejection.

I. INTRODUCTION

THERE are two main sources of physiological motion
inside the body: respiration and heartbeat. Respiration is

the most important source of disturbances. It yields large cyclic
displacements of several organs, mainly in the abdomen and
in the chest. Disturbances induced by the heart are restricted
to a small area surrounding it.

These motions can be very disturbing for the surgeon during
the operation especially for surgical procedures requiring good
precision (e.g., needle insertion and suturing). To overcome
this problem some strategies have been developed. Since
respiration is controlled by an external ventilator, it is possible
to stop it for a short period of time required to perform a
very precise gesture. But the limitation of such a technique is
obvious: only quick gestures that are deterministic in time can
be performed this way.

In cardiac surgery, the heart can be stabilized with a me-
chanical device [1], [2] that constrains the motions of a small
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area on its surface by suction or pressure. Despite many im-
provements since the first version in 1990, stabilizers have still
some drawbacks: there is always a remaining residual motion,
the suction device may produce injuries to the myocardium
and the pressure device is not well suited for operations which
are located behind the heart. So, in most cases, the heart has
to be stopped and the blood circulation bypassed through an
external heart-lung machine which implies more risks and a
longer recovery time for the patient.

These are current solutions to work around the problem of
physiological motion. Robotic surgery offers a new means to
efficiently reject such disturbances with lower risks and better
accuracy.

Many contributions deal with physiological motion compen-
sation. Some of them focus their interest more specifically on
signal analysis.

The reference [3] is a good survey on human hepatic
motion due to respiration. The authors summarize all the
reported characteristics of this motion that they found in
various medical publications. They also list some therapeutic
procedures that could be improved with the use of a filtering
system. These procedures mainly involve percutaneous needle
placement using ultrasound (US), computed tomography (CT)
or magnetic resonance imaging (MRI) guidance.

Anticipating and predicting is a leitmotiv in almost all the
works existing on this topic. Indeed, the key idea is to use the
repetitive property of physiological motion to anticipate the
next disturbance cycle by assuming that it will be almost the
same than the previous one which has been learned.

In [4], Ortmaier studies the visual tracking of natural
landmarks on the surface of the heart. He uses a motion
prediction approach that robustly tracks the features even with
disturbances or short occlusions. The goal of this work is to
compensate for these motions by using a robotic arm con-
trolled by visual servoing. Robust tracking of heart movements
in the image has been successfully completed in this work, but
active motion compensation is presented as future work.

In [5], Thakral et al. analyze the motion of the chest wall
and the heart wall of an anesthetized rat using a fiber optic
probe. They point out the complexity of these motions since
they result from the addition of two components: one due to
respiration and the other due to cardiac beating. In order to
model this motion, they use a two-stage adaptive algorithm. In
a first stage the Fourier coefficients of the respiratory motion
are estimated. Then this component is subtracted from the
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initial signal. A second stage estimates the Fourier coefficients
of the cardiac disturbance from the resulting signal. In our
work, we use a similar approach to estimate the motion of a
pig’s heart.

The same adaptive algorithm is used in [6] and [7] to model
physiological tremor of the surgeon’s hand. Only one stage is
required since this motion contains only one quasi-periodic
component. This work is very original since the disturbance
estimator is used in a control loop that cancels the tremor
thanks to a piezoelectric actuator.

Few papers actually mention successful experiments with a
closed control loop involving a disturbance observer. For this
reason the paper [8] from Schweikard et al. is very interesting
since they describe a radiation therapy system including a
radiation source mounted on a robot which tracks a moving
tumor. They use the combination of two kind of sensors – a
pair of X-ray cameras and an infrared tracking system – to
compute a deformation model which describes the correlation
between the motion of internal gold markers and external
infrared markers. This model is used to obtain the positions of
the internal gold markers attached to the target organ with a
high refresh rate (60 Hz) even with a very slow X-ray imaging
system (0.1 Hz). Then, this measurement is used to control the
robot which compensates for the respiration-induced motion
of the tumor. However, this work is not focused on the control
strategy: for example, the controller might use the deformation
model to anticipate the disturbance and reduce the tracking
error which is still significant.

In [9], Nakamura et al. report a very impressive high-
speed visual servoing experiment which uses a small 4 degrees
of freedom robotic finger to track a marker attached to the
surface of the heart. They demonstrate the feasibility of
robotic tracking of fast heart movements and introduce the
notion of “Heartbeat synchronization”. This defines a control
architecture where the surgeon can teleoperate a robot which is
synchronized with the heart’s motion. Furthermore, the image
of the operating scene is filtered to compensate for the motion
of the heart. This gives the surgeon the feeling that he is
operating on a stopped heart. But in this work, like in [8], the
model of the disturbance is not used to improve the tracking.

In this paper, we study the problem from the automatic
control point of view. We propose two different solutions, each
suited for one kind of physiological motion. For the respira-
tion, we modified the Generalized Predictive Controller (GPC)
[10] to add repetitive properties. This repetitive GPC (R-GPC)
is able to learn the disturbance cycle due to respiratory motions
and so better reject it due to its predictive capabilities. As
mentioned before, the heart motion is more complex. We
use an adaptive disturbance predictor in combination with a
standard GPC to efficiently reject this motion by using the
prediction of the disturbance. In our experiments, we use
visual feedback to track physiological motion in the image
of a camera thanks to standard image-based visual servoing
techniques [11], [12].

This paper is divided in five sections. In section II we
present the global context of active filtering of physiological
motion. Section III is focused on the cancellation of respiratory
motions whereas section IV treats the problem of cardiac

motions.

II. ACTIVE FILTERING OF PHYSIOLOGICAL MOTION

The aim of active filtering in robotized surgery is to give
the surgeon the feeling that he is operating on a scene that is
almost still so he can concentrate his efforts only on the useful
tasks. Figure 1 gives an overview of such a system.

We assume that the surgical robots are tele-operated. The
reference signals coming from the control console are fed to
a controller. The controller uses the visual feedback (coming
from an endoscope, an external camera, or even from a high-
speed CT or US imaging system) to reject the disturbances due
to physiological motion while guaranteeing fast and accurate
following of the reference.

Disturbance canceling acts on the relative position of the
surgical tools with respect to the organs and on the endoscopic
view provided to the surgeon. The first is achieved by adding
a component to the motion of the surgical tools that is
synchronized with the motion of the organ. The stabilization of
the image can be obtained either with pure image processing
either by moving the vision system. We extend here the
concept of “Heartbeat synchronization” from Nakamura et al.
to the respiration. Furthermore, they only mention software
stabilization of the image. A better result can be obtained
by moving directly the imaging system, making it follow the
moving scene. Such an active mechanical filtering of the image
avoids some motion blur effects and maximizes the field of
view.

Motions due to respiration and cardiac beating are very
different. We discuss here the main properties of these two
kind of signals.

A. Respiratory motions

We suppose that the patient is anesthetized and placed under
artificial ventilation. The ventilator is a mechanical device
that controls the air flow into the patient’s lungs thanks to
endotracheal intubation. So, since the respiration is forced by
this machine, its cycle is perfectly periodical.

The plot (A) in figure 2 gives the measured distance between
the tip of a laparoscopic instrument and the surface of an anes-
thetized pig’s liver with respect to time. This measurement was
estimated from the endoscopic image with a reconstruction
method described in [13]. In this experiment, the instrument
is static so the variation of the distance is only due to the
motion of the liver. The plot shows clearly that the disturbance
due to respiration is periodical. In order to quantify how
constant is the disturbance cycle from one period to another,
we have processed the signal in plot (A) with the FIR filter
F (z) = 1 − z−T . The integer T is equal to the number of
sampling intervals in one disturbance cycle (T = 105 in this
case and the sampling frequency is 25 Hz).

This filter cuts all the harmonics of the disturbance (in-
cluding the first). It simply gives the difference between two
consecutive cycles of the disturbance, yielding zero if the
signal is perfectly periodical. So the interpretation of the plot
(B) in figure 2 is the following: the difference between two
consecutive cycles lies in an interval from -1 to 1 millimeters.
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Fig. 1. System overview
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A) Anterior−posterior hepatic motion
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B) Filtered hepatic motion

Fig. 2. Measurement of the motion of a pig’s liver secondary to respiration

Since the amplitude of the disturbance is about 8 mm, the
maximum variation between two cycles is about 12.5%.

So the main property of the disturbance signal due to
respiration is its almost-perfect periodicity. Furthermore, it is
rather a slowly-varying signal, so that a sampling frequency
of 25 Hz is sufficient to avoid aliasing.

B. Cardiac motions

Cardiac motions are much more complex than motions
due to respiration since they are the combination of two
components as shown in figure 3. These measurements have
been acquired with a 500 Hz camera on a living pig and give
the anterior-posterior motion of the heart in pixels. In this
experiment, the pixel/distance ratio is about 40 pixels/cm. One
can see clearly two components in this signal: the component
due to the beating of the heart at 1.6 Hz and the component
due to the respiration at 0.2 Hz.

The plot shows also that the motion induced by the beating
has some very fast transients. Figure 4 is focused on these
transients. It shows what would be the result of a sampling
at standard video rate, i.e. 25 Hz. The lost of information
due to aliasing is obvious. So, a high sampling frequency
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Fig. 3. Disturbance due to cardiac beating. Result of adaptive filtering.
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Fig. 5. Typical repetitive control scheme

(greater than 100 Hz) is required for the servo loop that will
compensate for these motions.

In the two following sections we will present two different
approaches to physiological motion filtering: one suited for
respiratory motions and another suited for cardiac motions.

III. CANCELING OF RESPIRATORY MOTIONS

Repetitive control is known to work only when the distur-
bance shape and period is very stable. This is clearly the case
with disturbances secondary to respiration.

A. Repetitive control

The idea of repetitive control or iterative learning control
which is very similar was introduced in 1984 (see e.g. [14] for
a robotic application). The typical scheme of such a control
loop is given by figure 5.

A strong assumption is made on the reference since it should
be periodical or at least slowly varying. A fast, non periodical,
variation of the reference yield an error e that is learned by
the repetitive controller and considered as periodical. So, at
the next period, the repetitive controller try to anticipate a
variation of the reference that does not happen. This yield
an overshoot on the output y that is repeated periodically
and which amplitude decreases over time according to the
forgetting factor of the repetitive controller.

In the context of telemanipulated robotic surgery, the refer-
ence r is given by the joysticks of the control console and the
disturbance d models the effect of physiological motion on the
visual servo loop. To simplify the problem, imagine that the
surgeon’s joystick controls only the distance between the tip of
the instrument and the surface of the target organ (see figure 6).
Let y be this distance estimated by vision, r be the reference
for this distance given by the surgeon and d be the disturbance
added to this distance due to respiration. Since d is periodical
and the repetitive controller is tuned to that particular period,
the disturbance should be perfectly rejected after a short
learning phase. But there is no guarantee that the reference
r will be periodical or even slowly varying since it reflects
the motion of the surgeon’s hand. This is the main drawback
that prevents the use of standard repetitive control in this case.
To overcome this issue, we propose a modified version of the
Generalized Predictive Controller that we called R-GPC and
where the reference following function is clearly separated
from the periodical disturbance rejection function. With this
controller, there is no assumption made on the reference like
with standard repetitive control. Furthermore, it is possible to
tune separately the reference following performance and the
disturbance rejection performance.

Fig. 6. Cancellation of respiratory motions: experimental setup

B. R-GPC

This section introduces a new unconstrained Generalized
Predictive Control scheme based on a repetitive input-output
model of the system to be controlled.

Several applications of Model Predictive Control (MPC)
to the rejection of periodic disturbances can be found in
the literature (e.g. in the chemical industry [15]–[17] among
others). The controllers are developed using the state-space
formulation of MPC and only steady-state control is consid-
ered. Thus, no distinction is made between a periodic output
disturbance or a periodically varying reference.

Here, we compute separate contributions of the control input
to reference trajectory tracking and fast disturbance rejection
by means of a new cost function that ensures no interaction
between both components.

1) Repetitive ARIMAX model: Unconstrained GPC was
originally introduced by Clarke [10], where the system model
is represented by an ARIMAX equation,

A(q−1)y(t) = B(q−1)u(t− 1) +
C(q−1)

∆(q−1)
ξ(t) (1)

where q−1 is the backward operator, Ts = 1 s is the (normal-
ized) sampling period, A and B are two polynomials modeling
the system dynamics (B may also include pure delays), and
polynomial C is used to color the zero-mean white noise ξ(t).

Polynomial ∆ is used to make noise ξ/∆ be non-stationary,
which is suitable to model any perturbation in a control loop
[18]. For instance, ∆ is set to a pure integrator,

∆(q−1) = δ(q−1) , (1− q−1),

when disturbances are only supposed to be constant steps [10],
[18].

However, this classical setting is not appropriate when the
actual disturbances vary periodically over time; we therefore
propose to modify the ARIMAX model by including repetitive



IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. Y, NOVEMBER 2003 5

features of disturbances and write ∆ as:

∆(q−1) = δ(q−1) ∆R(q−1) (2)
with ∆R(q−1) , 1− α q−T (3)

and T ∈ N, T ≥ 2, is the number of sampling periods in
one period T ∗ of the disturbance. So the perturbation model
ξ/∆ is actually made periodic with a period equal to T . The
scalar α is chosen in ]0; 1] and acts as a forgetting factor. Its
main effect is to filter the control signal in order to increase
the robustness against errors in the system model or noise in
the visual measurements.

2) Separation of control input: Writing y(t) in equation (1)
as y(t) = yth(t) + ε(t) yields the two following equations:

Ayth(t) = B u1(t− 1) (4)

Aε(t) = B u2(t− 1) +
C

∆
ξ(t) (5)

where u(t) is now written as u(t) = u1(t) + u2(t). The
control signal u1(t) is the input of the theoretical system model
(4), yielding the theoretical output measurement yth(t). The
control signal u2(t) is the part of the total control signal u(t)
that is responsible for the rejection of the measurement error
ε(t) due to noise and disturbances.

Multiplying equation (4) by δ yields:

Aδyth(t) = B δu1(t− 1) (6)

Substituting A
′

for ∆RA and B
′

for ∆RB, the product of
equation (5) by ∆ yields:

A
′
δε(t) = B

′
δu2(t− 1) + C ξ(t) (7)

Then, following and adapting the method from [10], [18]
to this formulation of the controller, the expression of the
cost function for the unconstrained R-GPC is derived from
equations (6) and (7) as:

J (u = u1 + u2, k) =

N2∑

j=N1

‖ŷth(k + j)− r(k + j)‖2

+

N2∑

j=N1

‖ε̂(k + j)‖2 + λ

N3∑

j=1

‖δu1 (k + j − 1) ‖2

+µ

N3∑

j=1

‖δu2 (k + j − 1) ‖2 (8)

where N1, N2 are respectively, the lower and upper bound
of the cost horizon, and N3 is the length of the control cost
horizon; N3 < N2 and δui(t+ j − 1) = 0 for j > N3, i = 1
or 2; λ and µ weight the relative importance of both control
energies. The reference trajectory is denoted by r(t).

The aim is to compute the N3 future control increments
δu1(t + j − 1) and δu2(t + j − 1) that minimize the cost
function (8). This yields control increments δu1(t+j−1) that
minimize the error between the predictions of the theoretical
model output and future reference values r(t+ j) and control
increments δu2(t+ j − 1) that make the actual system output
tend toward the theoretical one, or, equivalently, compensate
for the measurement disturbances. Note that the two sets of
control increments separately contribute to the minimization

of the cost function. As the control law is receding, only the
first control increment δu(t) = δu1(t) + δu2(t) is sent to the
system, and the overall minimization is performed at each time
step.

The advantages of this decomposition are several. The
control signal u2 that acts on the disturbance rejection is
equivalent to an autonomous mode of the robot since it is
independent of control signal u1 that is directly driven by
the surgeon. Different levels of saturation can be put on both
control inputs in order to prevent teleoperated component
u1(t) from saturating with no influence on the perturbation
cancellation in case of fast changes in the reference signal. It
is possible to tune separately the bandwidth of the disturbance
rejection and the bandwidth of the reference following thanks
to the parameters µ and λ.

C. Laboratory testbed

We have developed a testbed to validate the control strategy
in our lab before making in vivo experiments (see figure 7 and
8).

1) Description: In this testbed, we use two robots. The
robot that holds the simulated instrument has 6 actuated
degrees of freedom (DOFs). It has the same kinematics than
the Aesop or Zeus arm from Computer MotionTM but with all
its joints actuated. Furthermore, the power of the actuators has
been increased to achieve high dynamic performances. This
robot is a prototype that was manufactured by SINTERSTM

from our specifications.
We use another 2-DOF robot to simulate a moving organ.

This robot has 2 perpendicular rotational joints. It holds a
planar target that simulates the surface of the organ. So the
motion of the target can be precisely controlled to make a
periodic complex displacement.

The endoscope is simulated by a static camera mounted
on a tripod looking at the moving target. It is a high-speed
CCD camera (DALSATM CAD6) that runs at 500 frames per
second with a resolution of 256 × 256 pixels. We chose
high-speed imaging to be able to track fast simulated organ
motions. Indeed, we want to use the same testbed to validate
compensation algorithms for cardiac surgery.

With this system, the whole visual servo loop is synchro-
nized with the image acquisition and so runs at 500 Hz.
To guarantee a stable sampling frequency, the use of a real-
time system is mandatory. We use RTAI [19]. We developed
a customized version of the frame grabber driver (PC-DIG
from Coreco ImagingTM) that works in real-time mode. So the
vision computer (see figure 8) performs image acquisition,
image processing and control processing in real-time mode.
The control signals are transmitted to the controller of the
6-DOF robot via a 10 Mbits/s serial link.

This controller was also custom-developed in our lab. It
can be switched in a slave mode where the joint position
loops are deactivated and the control signals coming from the
serial link are directly sent to the joint-level velocity loops of
the robot. In this mode, the controller is synchronized by the
vision computer thanks to the serial link, and so, in our case, it
sends the control signals at 500 Hz. The delays are drastically
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Fig. 7. Picture of the testbed

Fig. 8. Testbed diagram

reduced with this scheme: there is only a delay of one sample
due to the control signal transmission.

2) Visual measurement: With this testbed the experiment
can be easily extended to the compensation of 3 DOFs by
simply adding some markers on the oscillating target (see
figure 8 and 9). We also use two optical markers to localize
the position of the instrument with respect to the target: the
position of the instrument’s tip is marked by an LED, and
a laser source projects a beam parallel to the axis of the
instrument, yielding a spot on the surface of the target.

Let M , L and T be 3 points in the image that are
respectively the center of mass of the markers on the target,

Fig. 9. Image of the 500Hz camera

Fig. 10. Block diagram of the linearized visual loop

the center of the laser spot and the center of the LED. Let cM ,
cL and cT be respectively the coordinates of M , L and T in
Rc, the image frame: cM = [xm ym]T , cL = [xl yl]

T and
cT = [xt yt]

T . Three parameters are controlled in the image
plane: the coordinates ∆x = xm − xl and ∆y = ym − yl
of the vector ~LM and the difference d = yt − yl. ∆x and
∆y are servoed to zero so that the instrument tracks the target
area on the surface of the simulated organ whereas d, the
vertical distance in pixels between the tip of the instrument
and the surface of the simulated organ is servoed to a specified
reference d0. Let us define F = [d ∆x ∆y]T the feature
vector.

3) Model of the visual loop: In this experiment, we only
use the first 3 joints of the robot. Let Q be the vector of
the joints’ positions: Q = [q1 q2 q3]T . Since the relative
position between the 6-DOF robot and the target cannot be
known in advance, the interaction matrix Ji : Ḟ = JiQ̇ must
be identified. In a preliminary phase, a step displacement is
performed successively on each of the first 3 joints. The corre-
sponding displacements are measured in the image yielding an
estimation of Ji, valid in an area close to the working point.

To perform R-GPC control, it is necessary to have a linear
model of the visual loop. The linearized model of the visual
loop is given by the block diagram in figure 10. We assume
that the dynamic behavior of the robot is almost linear around
the working point and so can be modeled by a transfer function
G(s). This is a strong assumption when performing direct
torque control. But in our case there are joint-level velocity
loops that reject nonlinearities like Coriolis, centrifugal, or
gravity effects and therefore have a linearizing action on the
model (see [20] for more details). The transfer function G(s)
is obtained by using standard linear identification techniques.

In the block diagram (figure 10), the feature vector reference
R(z) is compared to the feature vector measurement Ŷ (z)
estimated by vision yielding the vector ∆F (z) of the errors
in the image plane. The R-GPC outputs a control signal U(z)
that is sent to the robot controller with a fast serial link (1
sample delay modeled by z−1) and then converted into an
analog voltage Q̇∗(s) with a DAC modeled by a zero-order
hold (ZOH). Then, Q̇∗(s) is sent as reference to the built-in
velocity loops of the joints’ power amplifiers.

The relationship between the joint velocity vector Q̇(s) and
the image plane velocity vector Ḟ (s) is Ji, the interaction
matrix. Then Ḟ (s) is integrated (transfer function s−1) yield-
ing F̂ (s), the displacement in the image plane estimated by
the camera. This information is sampled by the frame grabber
at the frequency 1/Ts. The delay z−1 in the feedback loop
models the image acquisition and processing duration.
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Fig. 11. Testbed: regulation of d with R-GPC

From this simplified block diagram, we obtain:

V (z) =
Y (z)

U(z)
= z−2(1− z−1)Z

{
JiG(s)

s2

}
(9)

where Z represents the z-transform. So the transfer function
V (z) models the linearized dynamic behavior of the visual
open loop. It is valid in a small area around the working point.
In the particular case of robotized surgery, this assumption is
almost always verified since the robot is usually working in
a small subspace of its workspace (see [13]). Nevertheless, in
the event of larger displacements, a gain scheduling control
strategy could be used.

Finally, this transfer function is converted to the ARIMAX
form (equation (1)) using well-known regularization tech-
niques. So the gain of the R-GPC computed with this model
is optimal with respect to the cost function (8).

D. Experiments

1) Laboratory experiments: For the laboratory experi-
ments1 we used the testbed described in section III-C to
validate the repetitive approach. We simulated the motion due
to respiration by programming the controller of the 2-DOF
robot to describe a cyclic trajectory.

In figures 11, 12 and 13 the R-GPC was switched on at time
t = 8s. After approximately one period, the disturbance has
been learned and almost perfectly rejected. For these experi-
ments, the pixels/distance ratio is approximately 30 pixels/cm.
So, for a disturbance whose peak-to-peak amplitudes for d,
∆x and ∆y are respectively 1 cm, 0.8 cm and 1.3 cm, the
residual peak-to-peak amplitude of the error with R-GPC is
respectively 1.6 mm, 0.8 mm and 1.6 mm. This demonstrates
the efficiency of the proposed method.

2) In vivo experiments: The experimental setup2 of the in
vivo experiment is described in figure 6. It is the same than
the one used in [13] except for the unit of the distance y. In
this work we use the distance in the image between the tip of
the instrument and the surface of the target organ expressed

1See the video at address ftp://eavr.u-strasbg.fr/pub/jacques/simulation.avi
2See the video at address ftp://eavr.u-strasbg.fr/pub/jacques/resp.avi
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in pixels whereas in [13], the absolute distance in millimeters
was reconstructed. For a given working area, there is a linear
relationship between these two values. With the vision system
that we used (StrykerTM 988), and with the relative position of
the instrument with respect to the endoscope that we had in
our experiments, the pixel/distance ratio is about 5 pixels/mm.
This ratio is identified in an automated sequence prior to visual
servoing.

The model of the open loop is slightly different that the
one obtained on the testbed. Indeed, the transmission between
the vision computer and the controller of the Aesop arm is
especially slow yielding 6 additional sample delays in the open
loop. The endoscopic system outputs a standard PAL video
signal, so the sampling frequency of the visual loop is 25 Hz.

In figures 14 and 15 we compare the response of the system
with a standard GPC and a R-GPC. The GPC and the R-GPC
are tuned (with parameters λ and µ) to achieve the best trade-
off between stability and performance (see [21] for a tutorial
about GPC tuning techniques). A step is performed on the
reference r to simulate the action of the surgeon. These figures
demonstrate clearly the superiority of the repetitive strategy.
With the R-GPC, the maximal error is reduced by a factor 2.5
with respect to standard GPC.
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Fig. 15. In vivo: regulation of y with R-GPC

Figure 16 shows the decoupling of the two control signals
u1 and u2: the first contributes only to the following of the
reference whereas the latter contributes only to the rejection
of the repetitive disturbance.

IV. CANCELING OF CARDIAC MOTIONS

The repetitive strategy cannot be used here since the motion
of the heart is not constituted by one unique period. Instead we
use an adaptive disturbance predictor. This predictor is used in
combination with a regular GPC to anticipate future motions
of the heart yielding a better rejection. We call this control
scheme GPC+A where the A stands for Adaptive.

Since the disturbance signal due to cardiac beating has some
very sharp edges, a high sampling frequency is mandatory in
order to avoid aliasing. This is the main reason why we use
a 500 Hz visual feedback. The other reason is linked to the
manipulator dynamics. Indeed, to make a high-speed visual
servo loop, it is necessary to take into account the dynamics
of the manipulator as explained in section III-C.3. To achieve a
high bandwidth, the high-frequency modes must be modeled.
This is possible only with a high sampling rate, typically
greater than 100 Hz for a standard manipulator.
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Fig. 16. In vivo: control signal u1 and u2 with R-GPC

Fig. 17. Adaptive frequency-cancellation filter

A. Adaptive disturbance predictor

The idea is to cancel the cardiac component in the dis-
turbance signal by using a scheme proposed by Bodson et
al. in [22]. The block diagram of this adaptive frequency-
cancellation filter is given in figure 17 where ω is the frequency
that must be canceled and g is a positive gain that tunes the
velocity of the gradient descent.

Let ωc be the frequency of the fundamental of the car-
diac component. So, by defining ω = ωc in figure 17, the
fundamental of the cardiac component is suppressed in the
disturbance signal. An analysis of the power spectral density
shows that at least the 5 first harmonics should be taken into
account. This is possible by simply parallelizing the action of
5 filters, each of them tuned on a specific harmonic (ωc, 2ωc,
...5ωc) as shown in figure 18. A similar approach is described
in [23].

Figure 3 demonstrates the efficiency of this filter: the input
and the output of the filter are drawn on the same plot. It shows
clearly that the cardiac component has almost been suppressed
from the input signal. Furthermore, one can notice that no
delay is added by this filter.

Let Sd be the measured disturbance signal. We would like
to predict N2 future samples Ŝd(t+1), ... , Ŝd(t+N2) of this
signal. The adaptive filter outputs a signal Sr that contains
only the respiration component. So Sc = Sd − Sr is a good



IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. Y, NOVEMBER 2003 9

Fig. 18. Adaptive disturbance predictor
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Fig. 19. Prediction of the motion of the heart

estimate of the cardiac component. If we assume that Sr and
Sc are periodic with respectively a period Tr and Tc, then
Sr(t) = Sr(t − Tr) and Sc(t) = Sc(t − Tc). So, if N2 < Tr
and N2 < Tc, then,

Ŝd(t+ k) = Sr(t− Tr + k) + Sc(t− Tc + k)

∀k ∈ [1, N2] (10)

The block diagram of this algorithm is presented in figure
18. Figure 19 compares the predicted value Ŝd(t) obtained
from equation (10) with k = 0, and the real measured value
Sd. It shows that the predictor must learn at least one period of
the heart beating and one period of the respiration to anticipate
there respective motions. This explains why the output of the
predictor is zero for the duration of the heart beating period
(up to t=0.625 s) and why the estimation of the full motion of
the heart (beating + respiration) starts to fit the real motion at
time t=5s (the respiration component is zero for t ≤ 5s). The
plot shows that after a transient of 8 seconds the predictions
fit the measurements pretty accurately.

This filtering strategy assumes that the cardiac rhythm is
known and steady. This assumption is generally valid on an
anesthetized patient. If not, the value of ωc can be monitored
by using the electrocardiogram machine so that the filter can

adapt to a slow variation. Alternatively, direct estimation of
frequency could be implemented within the multi-harmonic
adaptive disturbance predictor, as in [6]. In the rare case of fast
and arrhythmic variations of the heart’s beating, the prediction
error can be used to trigger an emergency procedure.

B. Measurement of the disturbance

The testbed presented in figure 7 and 8 is used to validate
this control scheme. The visual servoing is in an eye-to-
hand configuration which means that the camera is static and
looking at the robot end-effector. This particular configuration
allows us to easily estimate the disturbance due to the motion
of the organ.

Let F be the vector of the visual measurements (see section
III-C.2). Let us decompose F in 3 terms: F = F0 + Sb + Sd
where Sb and Sd are respectively the contributions of the robot
motion and the organ motion to F and F0 is the initial value of
F . By definition, the interaction matrix Ji is the relationship
without any disturbance between the motion of the robot joints
and the motion in the image valid in a small area around the
working point: in this case Ḟ = Ṡb = JiQ̇ (see section III-
C.3).

So, in a first-order approximation, Sb = Ji(Q−Q0) where
Q is the current position of the robot and Q0 is a position
located at the center of the working area (e.g. the position of
the robot at the start of the visual servoing). We then obtain
that Sd = F −F0−Ji(Q−Q0). Notice that Sd estimated this
way is the displacement in the image due to the motion of the
organ with a static robot staying “virtually” at position Q0.

C. Visual servo loop

The block diagram of the visual servo loop is given in figure
20. The controller is a standard GPC. There is no repetitive
component in the noise model, so ∆(q−1) = δ(q−1) , (1 −
q−1) (see section III-B.1). Furthermore, there is no more need
to split the control signal in two parts like in the R-GPC, so
the cost function is given by:

J (u, k) =

N2∑

j=N1

‖ŷ(k + j)− r(k + j)‖2

+λ

N3∑

j=1

‖δu (k + j − 1) ‖2 (11)

where the variables have the same definition as in equation
(8). The model V (z) of the open loop, and consequently the
matrices B and A of the ARIMAX model, are the same as in
section III-C.3.

When the disturbance Sd is known in advance, it can be
shown (see e.g. [18]) that by replacing the original reference
r(k + j) by the modified reference rm(k + j) in the cost
function (20) the resulting controller is able to anticipate the
disturbance, yielding a smaller error.

The modified reference rm(k+j), ∀j ∈ [N1, N2], is defined
by:

rm(k + j) = r(k + j)− (Sd(k + j)− Sd(k)) (12)
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Fig. 20. Visual servo loop of the GPC+A

One can notice that since the future reference values are shifted
by a value that is a difference of predicted disturbance values,
an offset in the disturbance prediction would have no effect
on rm.

D. Experiments

In this section all the measurements are given in pixels.
The pixel/distance ratio depends on the relative position of the
camera with respect to the scene. Nevertheless 40 pixels/cm
is a good approximation for all 3 coordinates of the feature
vector F .

1) Laboratory experiments: To validate our approach we
performed first of all some experiments in the laboratory on
our testbed since it is obviously much more convenient to
develop the code on a simulated heart rather than on a real one.
Nevertheless, to accurately simulate the motion of the heart
with the oscillating target we acquired with the 500 Hz camera
the motion of markers attached on a pig’s heart. Then, in our
lab, we replayed the acquired sequence with the oscillating
target in order to have the most realistic motion possible.

The variations of F = [d ∆x ∆y]T due to the motion of
the oscillating target with no compensation are given in figure
21. One can see that these curves are pretty similar than those
acquired in real conditions given in figure 24.

In figure 22, we compare the error in the image with and
without modification of the reference. The modification of the
reference is switched on at time t = 12s yielding clearly a
better rejection for ∆x and ∆y . Nevertheless, on d, standard
GPC control without anticipation seems to give better results.

This is due to a technical issue: the only joint of the robot
that contributes to the variation of d, the vertical distance
in the image, is the first one which is a vertical translation.
This translational joint is also the heaviest and consequently
the slowest. During the experiments, we observed that the
control signal sent to this joint often saturated, especially when
switching on the modification of the reference. We tried the
same experiment with a slower simulated cardiac motion that
yields no saturation and we could observe in this case an
improvement on d when switching on the modification of the
reference.

So the first joint of this robot is too slow to follow the
fast transients due to the heart beats. In a future evolution
of this experiment, the design of the robotic arm should be
re-considered in order to achieve better performance in the
vertical direction.
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Fig. 21. Testbed: simulated motion of the heart

2) In vivo experiments: For the in vivo experiments3, we
put some optical markers on the surface of an anesthetized
pig’s heart as shown in figure 23. An access to the pig’s
heart was obtained by left anterior thoracotomy. The cardiac
frequency is controlled by the injection of drugs, the propofol
and the pavulon. There is no difference with the laboratory
experiment other than the way of producing the disturbance.

As expected, the in vivo experiment confirms the results
obtained with the testbed as shown in figure 25. Table I
summarizes these results. There is a reduction of 80% for
the variance of the disturbance when using a standard GPC.
This reduction is respectively 93% and 84% for ∆x and ∆y

when using the adaptive disturbance predictor in combination
with the GPC. These results demonstrate the validity of the
proposed method: anticipation of the disturbance yields better
rejection.

V. CONCLUSION

In this paper we tackle the difficult problem of canceling
complex physiological motion using a predictive control visual
servoing scheme.

We propose two different approaches for motions secondary
to respiration and cardiac motions. Indeed, the repetitive
control approach is very well-suited to compensate respiratory
motions since they are perfectly cyclic due to the external

3See the video at address ftp://eavr.u-strasbg.fr/pub/jacques/beating.mpg



IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. Y, NOVEMBER 2003 11

4 6 8 10 12 14 16 18 20 22 24
95

100

105

110

115

120

125

130

135

d 
(P

ix
el

s)
Testbed: regulation of d with/without GPC+A

4 6 8 10 12 14 16 18 20 22 24
−10

−5

0

5

10

15

∆ x (P
ix

el
s)

Testbed: regulation of ∆
x
 with/without GPC+A

4 6 8 10 12 14 16 18 20 22 24
−20

−15

−10

−5

0

5

10

Time (s)

∆ y (P
ix

el
s)

Testbed: regulation of ∆
y
 with/without GPC+A

Fig. 22. Testbed: regulation with GPC and GPC+A (at t=12s)

TABLE I
STATISTICAL EVALUATION OF THE MOTION COMPENSATION

Data Nber of Mean Min. Max. Var.

samples (pixel) (pixel) (pixel) (pixel2)

Sd 7546 ∆x 6.97 -5.88 28.58 80.52
∆y -19.24 -31.25 -5.44 42.20

GPC 18707 ∆x -0.02 -10.55 12.65 17.58
∆y -0.01 -7.34 7.60 8.57

GPC+A 5601 ∆x 0.09 -7.87 7.68 5.98
∆y -0.25 -10.94 7.01 6.82

ventilator. Laboratory and in vivo experiments validated the
proposed approach.

The motion of the heart is much more complex since it is
the combination of cardiac beats and motions due to respira-
tion. The frequencies of the two signals are in general non-
harmonic, so the repetitive approach cannot be used. Instead,
we propose an adaptive disturbance predictor that separates
the two components of the disturbance and, using the periodic
characteristics of the two extracted signals, outputs predicted
values of future disturbance samples. These predicted values
are used by a regular GPC to improve the rejection. Both
laboratory and in vivo experiments validate this predictive
approach.

We will concentrate our future work on the improvement

Fig. 23. In vivo experiment

of the cardiac motion compensation. We found in our experi-
ments that one joint of the robot is not fast enough to follow
the heart beats. So we need to think about a new structure that
can be fast and also accurate. Furthermore the results presented
were obtained through a large incision, but of course in the
long term the work aims toward a keyhole incision, which
will represent a fulcrum at the point of entry through the skin,
restricting the freedom of motion of the tool. This constraint
can be integrated into the control loop e.g. by using a force
sensor on the robot end-effector that measures the constraints
tangential to the skin surface at the entry point. Of course, the
wrist joints of the robot should be used to move the tip of the
tool but the control strategy would remain the same.

We need also to improve the way of detecting the motion of
the heart. The current system constituted by 4 LEDs attached
on a piece of tissue needs to be miniaturized in order to
better fit the size of a pig’s heart. Furthermore, the way of
attaching these markers to the surface of the heart must be
improved. The real-time use of electrocardiogram signals is
also a promising way of improvement.
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